Full design process
Grade Level: 8 (7 – 9) Time Required: 1 hours 15 minutesNote: 25 minutes one day, 50 the next day
Group Size: 3 Subject Areas:NGSS Performance Expectations:
Print this activity Suggest an edit
Units serve as guides to a particular content or subject area. Nested under units are lessons (in purple) and hands-on activities (in blue).
Note that not all lessons and activities will exist under a unit, and instead may exist as "standalone" curriculum.
Unit | Lesson | Activity |
In this two-part activity, students design and build Rube Goldberg machines. This open-ended challenge employs the engineering design process and may have a pre-determined purpose, such as rolling a marble into a cup from a distance, or let students decide the purposes. This engineering curriculum aligns to Next Generation Science Standards (NGSS).
Designing and building is essential to engineering. Engineers follow the steps of the design process to help them create the best possible solutions to real-world problems. These challenges may be simple or complex and the wide variety of solutions can also cover a range of effort for the user. In general, complex designs require more effort to develop than simple ones. Rube Goldberg designs are meant to show the unnecessary complexities in machines, which sometimes result from modern technology.
Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.
All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.
MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. (Grades 6 - 8)
Do you agree with this alignment? Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions.
Alignment agreement: Thanks for your feedback!
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. (Grades 6 - 8)
Do you agree with this alignment? Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved. (Grades 6 - 8)
Do you agree with this alignment? Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
Alignment agreement: Thanks for your feedback!
The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution.
Alignment agreement: Thanks for your feedback!
During the first part of the activity, which is the design of the machines, tell the students that the following materials will be available for them. Anything else they think of requires teacher approval, for example, dominoes, an egg, a wooden dowel, wheels, etc.
Visit [ www.teachengineering.org/activities/view/cub_simp_machines_lesson05_activity1 ] to print or download.
In order to understand compound machines, it is helpful if students are familiar with the six individual simple machines and their abilities to make work easier, as discussed in lessons 1-3 of this unit. Compound machines are described in Lesson 4. This activity works is intended as a finale to the simple machines unit.
We have been learning about simple and compound machines, calculating mechanical advantage and thinking about machines as a part of society. What is a simple machine? A simple machine makes work easier for people. We also know that engineers build complex machines upon a foundation of knowledge of simple machines. Now we will look at how all of these things that we have been studying come together, as we take on the role of the engineers who design machines. We are not going to design just any machine though; we are going to invent Rube Goldberg machines. Recall that a Rube Goldberg is a contraption that accomplishes a simple task in a fantastically complicated way.
Several steps compose the process of inventing, regardless of the type of machine you want to create. Who knows the first step in the engineering design process? The first step in designing a good solution is to define the need and the audience. You will need to work with your team to decide what you will be designing. What is the problem you are trying to solve, and who are you designing it for?
Next, an engineer thinks about information that might help to solve the problem. Needed information might include the constraints or limitations on the problem, such as materials or time or safety. For this project, we have some materials already available and we want to use at least three simple machines. We definitely have limited time to our class period, and we want to make sure our contraption is safe.
After all of these things have been decided, engineers brainstorm design ideas. With your team, you will come up with many different simple machine ideas that could be used to accomplish your final task. Then your engineering team will choose which ones to use and create a plan or drawing of the design.
Why is it important to design your machine first, either as a drawing or a clear idea in your mind? (Answer: To just start building could lead you to a machine you don't like or doesn't work, and we don't want to waste materials and time.)
Make sure your machine has many different steps and motions in order to complete the end function and look like a Rube Goldberg. Professional engineers draw their inventions before the thing is built, so we will do that, too. Remember to include a materials list.
Once you have a drawing and materials list, and the design has been approved by the teacher, begin building. Remember that good engineers try not to use more material than necessary and are interested in an attractive product that works as designed. After everyone is finished, we will rotate through and see all the machines in action.
Before the Activity
With the Students
Part 1: Design the Rube Goldberg Machine (25 minutes)
Part 2: Build the Rube Goldberg (50-60 minutes)
design: To form a plan.
Rube Goldberg: Cartoonist and engineer who poked fun at overly complicated machines; a machine that operates in a complicated way in which the procedure could have been much simpler.
specification: An exact and detailed statement of something to be built.
Discussion Questions: Solicit, integrate and summarize student responses.
Activity Embedded Assessment
Activity Discussion: Review and discuss the activity with the entire class. Use the answers to gauge students' mastery of what it means to design and build. Be sure to cover both the process and the purpose of its design.
Engineering Design Process: Have students acknowledge each step of the engineering design process as they are completing them. Write the steps on the board for student reference. The steps include: Define the problem, gather information, brainstorm ideas, select the most promising idea, explain your design, build and test your design, and redesign for improvement based on what you have learned from testing.
Rube Goldberg Worksheet: Use this worksheet to assign students to take a closer look at a Rube Goldberg cartoon and, drawing upon previously learned concepts, develop arguments that say the machine could in fact work.
Remind students that the Rube Goldberg cartoon machines would probably never work in the real world, so they should not design something that closely resembles his cartoon, because they probably would not be able to build it.
Have students explain how they would find the mechanical advantage of their Rube Goldberg machines.
Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!
PS: We do not share personal information or emails with anyone. Subscribe to TE NewsletterMiddle School Lesson
Rube Goldberg and the Meaning of MachinesThrough the cartoons of Rube Goldberg, students are engaged in critical thinking about the way his inventions make simple tasks even harder to complete. As the final lesson in the simple machines unit, the study of Rube Goldberg machines can help students evaluate the importance and usefulness of th.
Middle School Lesson
Not So SimpleStudents expand upon their understanding of simple machines with an introduction to compound machines. This lesson encourages students to critically think about machine inventions and their role in our lives.
Upper Elementary Lesson
Simple Machines and Modern Day Engineering AnalogiesStudents apply the mechanical advantages and problem-solving capabilities of six types of simple machines (wedge, wheel and axle, lever, inclined plane, screw, pulley) as they discuss modern structures in the spirit of the engineers and builders of the great pyramids.
High School Maker Challenge
Simple Machines and the Rube Goldberg ChallengeStudents research and learn about simple machines and other mechanisms through learning about a Rube Goldberg machine. Student teams design and build their own Rube Goldberg devices that incorporate at least six simple machines. This project is open-ended with much potential for creativity and fun.